If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+91x+49=0
a = 20; b = 91; c = +49;
Δ = b2-4ac
Δ = 912-4·20·49
Δ = 4361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4361}=\sqrt{49*89}=\sqrt{49}*\sqrt{89}=7\sqrt{89}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(91)-7\sqrt{89}}{2*20}=\frac{-91-7\sqrt{89}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(91)+7\sqrt{89}}{2*20}=\frac{-91+7\sqrt{89}}{40} $
| 12m= 3 | | -1/3x+1=x-3 | | -77=5(7x+1)-6(x+4) | | −12−5x2+2x4=0 | | 4-7x=3-x+13 | | 14=3m−-5 | | 8x+3=8(4)+3 | | 2(3x+5)=2x+54 | | 19x-5=16x+4 | | -(v+12)=-2 | | 13/6=5x | | 11)3x+1=16 | | 43-(5x)=8 | | 30=2(u-3)-8u | | 4.32x-5.252=16.78 | | -3n-12=2(n+3)+n | | (7x+1)(x-4)=7x^2-27x-4 | | (x+15)+(6x/5+6)+(2x/3+30)=180 | | 3z+6+4z=90 | | 16=-2/3(6b+6) | | 3x+12-x=10 | | 4x+3(x–3)=26 | | 2y-4=5y+23 | | 2(4-6x)=24+4x | | y+9(-3)=12 | | x2-6x-8=6 | | 3(3b+1)=3+b | | 4x-2(x-8)=14 | | 12(4+x)=36x | | -0.125x+3=10 | | 16x=1600 | | 5(2r-3)=65 |